Website founded by Milan Velimirović in 2006
16:37 UTC
 
MatPlus.Net Forum Promenade A big construction challenge for nightrider experts 



You can only view this page!
  (1) Posted by Siegfried Hornecker [Monday, Sep 26, 2011 11:19]; edited by Siegfried Hornecker [110926]  A big construction challenge for nightrider experts I'd like to see a problem where a nightrider checkmates in all 12 possible ways.
According to an article by Gerson Berlinger (http://b3rn0ull1.blogspot.com/2011/05/thinkbig.html):
QUOTE Dawson points out that the absolute maximum of 12 mates by a nightrider can be achieved on a board not less than 101 by 121. Any takers?
Same question by me:
Is anyone able to compose this with the smallest possible board size (of course, this could be bigger than 101 by 121, nobody knows)? No fairy pieces or conditions allowed, other than nightriders and the board size.
No prizes here, just for fun and curiosity. :)
Thanks to Zalmen Kornin for pointing me to that blog!   (2) Posted by Jacques Rotenberg [Monday, Sep 26, 2011 12:38]; edited by Jacques Rotenberg [110926]  JeanMarc Loustau already did something like that and even more.   (3) Posted by Hauke Reddmann [Thursday, Sep 29, 2011 12:01]; edited by Hauke Reddmann [110929]  Mind to post it? Would save me a lot of arcustangents :)
Hauke
EDIT: I arcustangented anyway, since I love math :)
My result for a pqrider:
Min size=t*p*q*(p^2+q^2)^2+1,t*Max[2*p^2*q^2*(p^2+q^2),p2*(p^4q^4)]+1
(t=2 for evenodd, t=1 for oddodd)
The result agrees with Dawson for p=2,q=1.   No more posts 
MatPlus.Net Forum Promenade A big construction challenge for nightrider experts 


